

October 2021

Jason Norlen General Manager Heber Light & Power 31 South 100 West Heber, UT 84032

Dear Mr. Norlen:

We are pleased to present a final report for the Impact Fee Analysis for Heber Light & Power (HLP). This report was prepared to provide HLP with a comprehensive examination of its existing impact fee structure by an outside party.

The specific purposes of this rate study are:

- Identify the fixed cost contributions to plant a new customer provides through electric rate tariffs
- Identify gross investment in plant necessary to service new growth at various sizes and voltages
- Determine impact fees by subtracting the present value of the fixed cost contributions from the impacts on plant

This report utilizes results of the electric cost of service study, financial projections performed in 2018 and HLP's capital improvement plan.

This report is intended for information and use by the utility and management for the purposes stated above and is not intended to be used by anyone except the specified parties.

Sincerely,

Utility Financial Solutions, LLC Mark Beauchamp CPA, MBA, CMA 185 Sun Meadow Ct Holland, MI 49424

Contents

TABLE OF CONTENTS

Introduction	1
Steps to Complete the Analysis	1
Step One – Determination of Contribution Margin	2
Step Two - Contribution Margin Unit Conversion	3
Step Three - Infrastructure Cost Analysis	4
Step Four – Determine Cost Impact by Class	5
Step Five – Conversion to Amperage	6
Significant Assumptions	7
Statistical Information	7
Considerations	8

LIST OF TABLES

Table 2 – Determination of Present Value of Contribution Margins3Table 3 – Average Contribution Margin per Billing Basis3Table 4 – Cost of Additional Investment in Plant4Table 5 – Calculation of Impact Fees by Class5Table 6 – Impact Fees by Amperage and Voltage Level6Table 7 – Class Load Data and Statistics7Table 8 – 120/240 Voltage Recommended Impact Fees8Table 9 – 120/208 Voltage Recommended Impact Fees9Table 10 – 277/480 Voltage Recommended Impact Fees10	Table 1 – Contribution Margin by Class	2
Table 3 – Average Contribution Margin per Billing Basis.3Table 4 – Cost of Additional Investment in Plant.4Table 5 – Calculation of Impact Fees by Class.5Table 6 – Impact Fees by Amperage and Voltage Level.6Table 7 – Class Load Data and Statistics.7Table 8 – 120/240 Voltage Recommended Impact Fees.8Table 9 – 120/208 Voltage Recommended Impact Fees.9Table 10 – 277/480 Voltage Recommended Impact Fees.10	Table 2 – Determination of Present Value of Contribution Margins	3
Table 4 – Cost of Additional Investment in Plant	Table 3 – Average Contribution Margin per Billing Basis	3
Table 5 – Calculation of Impact Fees by Class.5Table 6 – Impact Fees by Amperage and Voltage Level6Table 7 – Class Load Data and Statistics7Table 8 – 120/240 Voltage Recommended Impact Fees8Table 9 – 120/208 Voltage Recommended Impact Fees9Table 10 – 277/480 Voltage Recommended Impact Fees10	Table 4 – Cost of Additional Investment in Plant	4
Table 6 – Impact Fees by Amperage and Voltage Level	Table 5 – Calculation of Impact Fees by Class	5
Table 7 – Class Load Data and Statistics	Table 6 – Impact Fees by Amperage and Voltage Level	6
Table 8 – 120/240 Voltage Recommended Impact Fees	Table 7 – Class Load Data and Statistics	7
Table 9 – 120/208 Voltage Recommended Impact Fees	Table 8 – 120/240 Voltage Recommended Impact Fees	8
Table 10 – 277/480 Voltage Recommended Impact Fees10	Table 9 – 120/208 Voltage Recommended Impact Fees	9
	Table 10 – 277/480 Voltage Recommended Impact Fees	10

Introduction

This report identifies the impact fees Heber Light & Power should charge to new customers by identifying the amount new customers contribute to system expansion through rates and subtracting the costs for expansion of the system. The purpose of this analysis is to help ensure:

- New customers are not subsidizing existing customers.
- Existing customers are not subsidizing new customers.

This analysis helps ensure growth will benefit all customers in the system and not be adversely impacted by rate increases due to growth of the system. Growth causes additional capacity investments that often occur intermittently, and funds generated through impact fees are used to fund the expansions. As new customers are added to the system, HLP receives contribution margins through rates to fund a portion of the fixed infrastructure costs. Rates are set based on recovery of historical costs and margins generated by new customers are not sufficient to fund expansions of the system with new investments.

Steps to Complete the Analysis

The following steps were taken to complete the impact fee analysis:

- 1) Contribution margins generated by the rate tariffs and used to fund fixed infrastructure investments s were identified (Net Revenue).
- 2) The contribution margins were present valued over an appropriate period to determine the current value of the margins.
- 3) Plant investments to provide service to new customers were identified.
- 4) Total system cost impacts are calculated and maximum utility investment is subtracted to determine the impact fee by class.
- 5) Class impact fees are converted to amperage by voltage level.

Step One – Determination of Contribution Margin

Contribution margins were calculated for each class by subtracting identified variable costs from the cost to provide service to the class.

Revenue minus variable cost equals contribution margin

Table 1 identifies the expense allocated to each class of customers from the cost of service study. Variable costs are primarily driven by power supply and transmission costs, and distribution system costs are classified as fixed cost used to fund operation, maintenance, replacement, and expansion of the system. Table 1 below identifies the total recovery of distribution operations for each class with the residential class generating \$4.9M, Small Commercial, \$930k, Medium Commercial, \$1.14M, and Large Commercial, \$644k.

			Small	Medium	Large
Expense Description	Expense Classification	Residential	Commercial	Commercial	Commercial
Power Supply Expenses:					
Summer Demand	Variable	\$ 1,259,089	\$ 161,880	\$ 229,407	\$ 130,763
Summer Energy	Variable	390,945	75,329	120,476	85,246
Winter Demand	Variable	814,809	159,356	230,945	107,979
Winter Energy	Variable	756,762	174,750	306,725	151,538
Inter 2 Demand	Variable	554,688	94,608	99,840	68,603
Inter 2 Energy	Variable	308,043	70,954	117,329	82,178
Inter 4 Demand	Variable	478,099	170,475	218,022	126,707
Inter 4 Energy	Variable	588,396	147,714	261,500	151,626
Distribution Expenses:					
Distribution	Fixed	1,992,777	367,929	424,518	240,562
Transmission	Fixed	1,258,552	243,598	321,889	179,307
Transformer	Fixed	128,510	10,458	14,091	8,097
Substation	Fixed	1,389,225	272,517	367,201	210,991
Customer Related Expenses:					
Distribution Customer Costs	Included in Customer Investment	288,243	81,989	35,185	10,228
Transformer Customer Costs	Included in Customer Investment	504,396	143,472	61,570	17,898
Substation Customer Costs	Included in Customer Investment	173,845	49,449	21,221	6,169
Meter O&M	Included in Customer Investment	102,862	14,629	2,511	631
Meter Reading	Variable	139,631	39,717	3,409	396
Billing	Variable	526,019	149,623	64,209	18,665
Customer Service	Fixed	125,041	35,567	15,263	4,437
Total Cost of Ser	rvice	\$ 11,779,931	\$ 2,464,015	\$ 2,915,311	\$ 1,602,022
Total F	ixed	\$ 4,894,105	\$ 930,069	\$ 1,142,963	\$ 643,394

Table 1 – Contribution Margin by Class

Step Two - Contribution Margin Unit Conversion

The contribution to margin (Net Revenue) is present valued over a specified time period to determine the maximum contribution for each customer class and shown on a per kWh or kW basis. Table 2 shows the average net revenue for each customer class on a per kWh or kW basis. For example, for each kWh of sales to the residential class, 5.14 cents is used to fund the distribution system.

	Recovery Period												
Customer Class	(Years)	1		2		3		4		5		6	7
			In	vestmen	t ca	lculator (Fixe	d Cost Co	ontr	ibution /	# o	f Units)	
Residential	7 per kWh	\$ 0.0514	\$	0.0514	\$	0.0514	\$	0.0514	\$	0.0514	\$	0.0514	\$ 0.0514
Small Commercial	5 per kW	9.73		9.73		9.73		9.73		9.73		-	-
Medium Commercial	5 per kW	10.11		10.11		10.11		10.11		10.11		-	-
Large Commercial	5 per kW	9.86		9.86		9.86		9.86		9.86		-	-

Table 2 – Determination of Present Value of Contribution Margins

Table 3 details the value of the contribution margins by customer class. The value of the fixed cost recovery for a typical residential customer is \$2,585. Due to variations in customer usages within the small, medium, and large commercial classes, the utility investment is best expressed on a per kW basis multiplied by the projected annual kW sales for that customer. For example, a small commercial customer's value is \$41.00 kW times the projected annual kW sales to the new customer. The maximum utility investment per customer are then subtracted from the cost impacts of new infrastructure (identified in the next section).

					Recovery			Ma	ximum Utility
	C	OS Revenue	F	ixed Costs	Period			In	vestment per
Customer Class	Re	equirement	С	ontribution	(Years)	Utility Investment			Customer
Residential	\$	11,779,931	\$	4,894,105	7	\$ 0.2869 per k	Wh	\$	2,585
Small Commercial		2,464,015		930,069	5	41.00 per k	W		2,607
Medium Commercial		2,915,311		1,142,963	5	42.58 per k	W		37,322
Large Commercial		1,602,022		643,394	5	41.55 per k	W		180,681

Table 3 – Average Contribution Margin per Billing Basis

Step Three - Infrastructure Cost Analysis

The determination of impact fees depends on the additional capacity needed to service new load and is expressed by amperage and voltage requirements. The infrastructure costs are broken down into the following components:

- Distribution Local investments made to service customers peak demands
- Distribution Substation investments made to service area peaks
- System Substations investments made to handle HLP's peak demands
- Transmission System investments made to handle HLP's peak demands

HLP provided a capacity plan for the total system with a breakout of the amount attributed to expansion due to growth. The table below outlines the projected HLP investments in plant, the additional capacity provided by the investments, the expansion costs on a per kW basis, and the location of the capacity investment.

In addition, HLP provided historic record of impact fee related revenue and expenditures since the 2019 study. To accurately reflect revenue related to outstanding projects, UFS allocated the net fund balance at Year End 2020 to the components below.

Table 4 is used to identify the cost impacts associated with each type of cost component.

		Allocation			Optimal to		
	Gross	of Fund		Additional	Base	Cost per	
Cost Component	Investment	Balance	Net Impact	Capacity	Loading	kW	Allocation
Distribution Local & Substations	\$ 10,742,000	\$ 716,188	\$ 10,025,812	30,845	1.00	\$ 325.04	Customer Demand
Distribution Substation	11,917,000	794,527	11,122,473	30,845	1.00	360.59	Class NCP
System Substations	16,253,900	1,083,676	15,170,224	91,830	1.00	165.20	Class NCP
Transmission System	4,105,000	273,688	3,831,312	27,258	1.00	140.56	СР

Table 4 – Cost of Additional Investment in Plant

Customer Demand = Peaks created by customers

NCP = Area or Class Peak Demands

CP = System Peak Demands

Step Four – Determine Cost Impact by Class

The cost of service study provided information on each class' demand impacts on various portions of the electric system and the capacity needs for a new customer within each class.

Residential Class Example

The average residential customer creates a peak demand of 9.54 kW on local infrastructure and substations and 2.38 kW on system substations and transmission systems. The expansion cost per kW (A. Rate per kW) is then multiplied by the capacity needs for an average residential customer to generate the cost impacts by component. For residential, the average cost impact is \$7,269 and the maximum utility contribution derived in Table 3 was subtracted to generate an average impact of \$4,684.

			Small		Medium		Large	
Description	Re	sidential	Со	mmercial	Commercial		Со	mmercial
A. Rate per kW								
Distribution Local	\$	325.04	\$	325.04	\$	325.04	\$	325.04
Distribution Substation		360.59		360.59		360.59		360.59
System Substation		165.20		165.20		165.20		165.20
Transmission System		140.56		140.56		140.56		140.56
B. Average Impacts								
Distribution Local (NCP)		9.54		6.14		105.18		465.93
Distribution Substation (NCP)		9.54		3.95		64.55		327.65
System Substation (kW)		2.38		3.87		55.49		263.13
Transmission System (kW)		2.38		3.87		55.49		263.13
Cost Impact by Component (A x B)								
Distribution Local (NCP)	\$	3,101	\$	1,994	\$	34,189	\$	151,445
Distribution Substation (NCP)		3,440		1,423		23,275		118,147
System Substation (kW)		393		640		9,168		43,469
Transmission System (kW)		334		545		7,800		36,985
Total Impact Cost	\$	7,269	\$	4,602	\$	74,431	\$	350,046
Less: Maximum Utility Contribution		2,585		2,607		37,322		180,681
Impact Fees to be Recovered	\$	4,684	\$	1,995	\$	37,109	\$	169,365

Table 5 – Calculation of Impact Fees by Class

Step Five – Conversion to Amperage

Table 6 expresses the Table 5 results by Amperage and Voltage level using a typical residential customer's 100/120/240 AMPs service voltage as the base.

	120/240 Volt	120/208 Volt	277/480 Volt
10 A	\$ 234	\$ 352	\$ 811
20 A	468	703	1,622
30 A	703	1,055	2,434
40 A	937	1,406	3,245
50 A	1,171	1,758	4,056
60 A	1,405	2,109	4,867
70 A	1,639	2,461	5,678
80 A	1,873	2,812	6,490
90 A	2,108	3,164	7,301
100 A	2,342	3,515	8,112
125 A	2,927	4,394	10,140
150 A	3,513	5,273	12,168
175 A	4,098	6,152	14,196
200 A	4,684	7,031	16,224
300 A	7,026	10,546	24,336
400 A	9,367	14,061	32,448
500 A	11,709	17,577	40,561
600 A	14,051	21,092	48,673

Table 6 – Impact Fees by Amperage and Voltage Level

Significant Assumptions

The following assumptions are made in the creation of this report:

- 1) Discount Rate 6.0%
- 2) Recovery Period:

All Residential Services – 7 year recovery Commercial – 5 year recovery

Statistical Information

		Small	Medium	Large
Description	Residential	Commercial	Commercial	Commercial
Number of Customers	10,568	1,503	129	15
Energy at Meter	95,217,374	21,834,495	37,545,308	21,920,256
NCP Meter	24,317	4,876	6,736	3,829
NCP Primary	25,402	5,045	6,904	3,937
NCP Input	26,524	5,203	7,011	4,028
Annual LF	11%	27%	32%	36%
Group LF	42%	42%	51%	51%
Class Peak Factor	98%	98%	86%	80%
Impacts on Local Distribution Lir	ies			
Total Class - Indivdual NCP	100,829	9,221	13,569	6,989
Average Customer NCP	9.54	6.14	105.18	465.93
Impacts on Distribution Substati	ons			
Total Class NCP	25,614	5,933	8,326	4,915
Average Customer NCP	9.54	3.95	64.55	327.65
Transmission Facilities				
Total System CP	25,140	5,823	7,159	3,947
Average kW - System	2.38	3.87	55.49	263.13

Table 7 – Class Load Data and Statistics

Considerations

Currently, new customers are not contributing enough to cover the cost of capacity upgrades to the system. The table below compares the current and proposed impact fees and has identified the need for a 38.4% adjustment.

	Current	Proposed	Dollar	Percent
	120/240 Volt	120/240 Volt	Adjustment	Adjustment
10 A	\$ 169.25	\$ 234.19	\$ 64.95	38.4%
20 A	338.48	468.37	129.89	38.4%
30 A	507.73	702.57	194.84	38.4%
40 A	676.96	936.74	259.78	38.4%
50 A	846.21	1,170.94	324.73	38.4%
60 A	1,015.45	1,405.11	389.67	38.4%
70 A	1,184.69	1,639.31	454.61	38.4%
80 A	1,353.93	1,873.49	519.56	38.4%
90 A	1,523.18	2,107.68	584.50	38.4%
100 A	1,692.41	2,341.86	649.45	38.4%
125 A	2,115.52	2,927.33	811.81	38.4%
150 A	2,538.62	3,512.80	974.17	38.4%
175 A	2,961.73	4,098.26	1,136.53	38.4%
200 A	3,384.82	4,683.72	1,298.89	38.4%
300 A	5,077.25	7,025.59	1,948.34	38.4%
400 A	6,769.66	9,367.45	2,597.79	38.4%
500 A	8,462.07	11,709.31	3,247.23	38.4%
600 A	10,154.49	14,051.16	3,896.68	38.4%
700 A	11,846.90	16,393.02	4,546.12	38.4%
800 A	13,539.32	18,734.90	5,195.57	38.4%
900 A	15,231.73	21,076.75	5,845.02	38.4%
1000 A	16,924.15	23,418.61	6,494.47	38.4%
1100 A	18,604.98	25,760.47	7,155.49	38.4%
1200 A	20,296.34	28,102.33	7,805.99	38.4%

Table 8 – 120/240 Voltage Recommended Impact Fees

	Current	Proposed	Dollar	Percent
	120/208 Volt	120/208 Volt	Adjustment	Adjustment
10 A	\$ 254.05	\$ 351.54	\$ 97.49	38.4%
20 A	508.09	703.06	194.97	38.4%
30 A	762.14	1,054.61	292.46	38.4%
40 A	1,016.18	1,406.13	389.95	38.4%
50 A	1,270.23	1,757.67	487.44	38.4%
60 A	1,524.27	2,109.19	584.92	38.4%
70 A	1,778.32	2,460.74	682.41	38.4%
80 A	2,032.36	2,812.26	779.90	38.4%
90 A	2,286.41	3,163.80	877.39	38.4%
100 A	2,540.45	3,515.32	974.87	38.4%
125 A	3,175.57	4,394.16	1,218.59	38.4%
150 A	3,810.68	5,272.99	1,462.31	38.4%
175 A	4,445.80	6,151.83	1,706.03	38.4%
200 A	5,080.90	7,030.64	1,949.74	38.4%
300 A	7,621.36	10,545.98	2,924.62	38.4%
400 A	10,161.81	14,061.30	3,899.49	38.4%
500 A	12,702.26	17,576.62	4,874.36	38.4%
600 A	15,242.71	21,091.94	5,849.23	38.4%
700 A	17,783.16	24,607.26	6,824.10	38.4%
800 A	20,323.62	28,122.60	7,798.98	38.4%
900 A	22,864.07	31,637.92	8,773.85	38.4%
1000 A	25,404.52	35,153.24	9,748.72	38.4%
1100 A	27,944.97	38,668.57	10,723.59	38.4%
1200 A	30,485.42	42,183.88	11,698.46	38.4%
1300 A	33,025.87	45,699.20	12,673.33	38.4%
1400 A	35,566.32	49,214.53	13,648.21	38.4%
1500 A	38,106.78	52,729.85	14,623.08	38.4%
1600 A	40,647.23	56,245.18	15,597.95	38.4%
1700 A	43,187.68	59,760.51	16,572.82	38.4%
1800 A	45,728.14	63,275.83	17,547.70	38.4%
1900 A	48,268.59	66,791.16	18,522.57	38.4%
2000 A	50,809.03	70,306.47	19,497.44	38.4%
2500 A	63,511.30	87,883.10	24,371.80	38.4%
3000 A	76,213.55	105,459.71	29,246.16	38.4%

Table 9 – 120/208 Voltage Recommended Impact Fees

	Current 277/480 Volt	Proposed 277/480 Volt	Dollar Adjustment	Percent Adjustment
10 A	\$ 586.27	\$ 811.24	\$ 224.97	38.4%
20 A	1.172.49	1.622.42	449.93	38.4%
30 A	1.758.75	2,433.66	674.90	38.4%
40 A	2,344.98	3,244.84	899.86	38.4%
50 A	2,931.24	4,056.08	1,124.83	38.4%
60 A	3,517.47	4,867.26	1,349.79	38.4%
70 A	4,103.73	5,678.49	1,574.76	38.4%
80 A	4,689.95	6,489.67	1,799.72	38.4%
90 A	5,276.22	7,300.91	2,024.69	38.4%
100 A	5,862.44	8,112.09	2,249.65	38.4%
125 A	7,328.06	10,140.13	2,812.07	38.4%
150 A	8,793.68	12,168.17	3,374.48	38.4%
175 A	10,259.31	14,196.21	3,936.90	38.4%
200 A	11,724.88	16,224.19	4,499.30	38.4%
300 A	17,587.37	24,336.34	6,748.97	38.4%
400 A	23,449.81	32,448.43	8,998.62	38.4%
500 A	29,312.25	40,560.52	11,248.27	38.4%
600 A	35,174.69	48,672.62	13,497.92	38.4%
700 A	41,037.14	56,784.71	15,747.57	38.4%
800 A	46,899.62	64,896.86	17,997.24	38.4%
900 A	52,762.06	73,008.95	20,246.89	38.4%
1000 A	58,624.50	81,121.05	22,496.54	38.4%
1100 A	64,488.39	89,179.25	24,690.86	38.4%
1200 A	70,350.98	97,286.58	26,935.60	38.4%
1300 A	76,213.48	105,393.91	29,180.43	38.4%
1400 A	82,076.14	113,501.24	31,425.10	38.4%
1500 A	87,938.71	121,608.57	33,669.86	38.4%
1600 A	93,801.30	129,714.52	35,913.22	38.4%
1700 A	99,663.87	137,821.85	38,157.97	38.4%
1800 A	105,526.46	145,929.18	40,402.72	38.4%
1900 A	111,389.03	154,036.51	42,647.47	38.4%
2000 A	117,251.62	162,143.84	44,892.22	38.4%
2500 A	146,564.53	202,680.49	56,115.96	38.4%
3000 A	175,877.42	243,217.14	67,339.72	38.4%

Table 10 – 277/480 Voltage Recommended Impact Fees