

Heber Light & Power Electric Impact Fee Analysis April 2023

Corporate location: Utility Financial Solutions, LLC 185 Sun Meadow Court Holland, MI USA 49424 (616) 393-9722 Fax (888) 566-4430 Submitted Respectfully by: Mark Beauchamp, CPA, CMA, MBA President, Utility Financial Solutions, LLC mbeauchamp@ufsweb.com (616) 393-9722

April 2023

Jason Norlen General Manager Heber Light & Power 31 South 100 West Heber, UT 84032

Dear Mr. Norlen:

We are pleased to present a final report for the Impact Fee Analysis for Heber Light & Power (HLP). This report was prepared to provide HLP with a comprehensive examination of its existing impact fee structure by an outside party.

The specific purposes of this rate study are:

- Identify the fixed cost contributions to plant a new customer provides through electric rate tariffs
- Identify gross investment in plant necessary to service new growth at various sizes and voltages
- Determine impact fees by subtracting the present value of the fixed cost contributions from the impacts on plant

This report utilizes results of the electric cost of service study, financial projections performed in 2022 and HLP's capital improvement plan.

This report is intended for information and use by the utility and management for the purposes stated above and is not intended to be used by anyone except the specified parties.

Sincerely,

Utility Financial Solutions, LLC Mark Beauchamp CPA, MBA, CMA 185 Sun Meadow Ct Holland, MI 49424

Contents

TABLE OF CONTENTS

Introduction	1
Steps to Complete the Analysis	1
Step One – Determination of Contribution Margin	2
Step Two - Contribution Margin Unit Conversion	3
Step Three - Infrastructure Cost Analysis	4
Step Four – Determine Cost Impact by Class	5
Step Five – Conversion to Amperage	6
Significant Assumptions	7
Statistical Information	7
Considerations	8

LIST OF TABLES

Table 1 – Contribution Margin by Class	2
Table 2 – Determination of Present Value of Contribution Margins	3
Table 3 – Average Contribution Margin per Billing Basis	3
Table 4 – Cost of Additional Investment in Plant	4
Table 5 – Calculation of Impact Fees by Class	5
Table 6 – Impact Fees by Amperage and Voltage Level	6
Table 7 – Class Load Data and Statistics	7
Table 8 – 120/240 Voltage Recommended Impact Fees	8
Table 9 – 120/208 Voltage Recommended Impact Fees	9
Table 10 – 277/480 Voltage Recommended Impact Fees	.10

Introduction

This report identifies the impact fees Heber Light & Power should charge to new customers by identifying the amount new customers contribute to system expansion through rates and subtracting the costs for expansion of the system. The purpose of this analysis is to help ensure:

- New customers are not subsidizing existing customers.
- Existing customers are not subsidizing new customers.

This analysis helps ensure growth will benefit all customers in the system and not be adversely impacted by rate increases due to growth of the system. Growth causes additional capacity investments that often occur intermittently, and funds generated through impact fees are used to fund the expansions. As new customers are added to the system, HLP receives contribution margins through rates to fund a portion of the fixed infrastructure costs. When electric rates are set by the governing body they include a recovery for replacement cost of current assets that new customers will contribute toward funding through the rates charged. This is often referred to as net revenue that can be used to offset a certain amount of the system expansions. When the system expansion exceed the net revenues from customers it results in impact charges for new customers that are identified in this report.

Steps to Complete the Analysis

The following steps were taken to complete the impact fee analysis:

- 1) Identify the Contribution margins (Net Revenues) generated by rate tariffs and used to fund replacement cost of existing infrastructure.
- 2) The contribution margins are present valued over an appropriate period to determine the present value of the new customers contribution margins.
- 3) Review and classification of plant investments into investment to serve future growth and other investments used to either replace infrastructure or does no increase capacity in the system.
- 4) Total system cost impacts based on new plant investments divided by residential equivalent factors are then reduced by the value of the contribution margins.
- 5) The residential equivalent factors are converted to amperage and proposed to each amperage based on potential capacity needs of each customer.

Step One – Determination of Contribution Margin

Contribution margins were calculated for each class by subtracting variable costs typically power supply costs from revenues to identify the contribution margins generated by each class.

Revenue minus variable cost equals contribution margin

Table 1 identifies the total revenue requirements for each class and subtracts the variable costs to identify the fixed cost recoveries for each class of customers. Expense used in the analysis is from the cost of service study completed in 2022. Variable costs are primarily driven by power supply and transmission costs, and most of the distribution system is classified as fixed cost recovery. This includes distribution and sub-transmission cost recovery used to fund operation, maintenance, replacement, and expansion of the distribution and sub-transmission system. Table 1 below identifies the total recovery of distribution operations for each class with the residential class generating \$5.4M, Small Commercial, \$999k, Medium Commercial, \$1.2M, and Large Commercial, \$508k.

			Small	Medium	Large
	Expense		General	General	General
Expense Description	Classification	Residential	Service	Service	Service
Power Supply Expenses:					
Summer Demand	Variable	\$ 1,074,995	\$ 92,493	\$ 226,682	\$ 52,802
Summer Energy	Variable	1,514,690	240,935	415,564	260,351
Winter Demand	Variable	455,422	59,345	58,042	49,763
Winter Energy	Variable	2,156,849	408,251	607,392	350,656
Inter 2 Demand	Variable	195,708	21,044	48,731	12,732
Inter 2 Energy	Variable	1,071,089	189,679	345,996	227,691
Inter 4 Demand	Variable	353,333	64,478	103,285	48,860
Inter 4 Energy	Variable	1,544,119	315,405	534,075	341,859
Distribution Expenses:					
Distribution	Fixed	482,160	71,625	134,090	63,976
Transmission	Fixed	583,033	68,790	123,013	48,261
Transformer	Fixed	223,508	33,202	62,158	29,656
Substation	Fixed	2,251,814	334,508	626,236	298,783
Customer Related Expenses:					
Distribution Customer Costs	Fixed	599,385	167,964	81,688	24,913
Transformer Customer Costs	Fixed	106,215	29,861	14,372	4,348
Substation Customer Costs	Fixed	277,460	78,003	37,543	11,359
Meter O&M	Fixed	304,780	42,842	8,248	2,158
Meter Reading	Variable	169,033	122,967	11,837	1,432
Billing	Variable	213,411	59,997	28,877	8,737
Services	Fixed	218,377	61,393	29,549	8,940
Customer Service	Fixed	393,176	110,535	53,201	16,096
Tota	I	\$14,188,557	\$ 2,573,321	\$ 3,550,578	\$ 1,863,373
Total Fixed	ł	\$ 5,439,907	\$ 998,725	\$ 1,170,097	\$ 508,490

Table 1 – Contribution Margin by Class

Step Two - Contribution Margin Unit Conversion

The contribution to margin (Net Revenue) is present valued over a specified time period to determine the maximum value a new customer will generate over an appropriate recovery period. Table 2 shows the average net revenue generated by each customer type on a per kWh or kW basis. For example, for each kWh sold to the residential class generated \$0.0466 cents of fixed cost recovery used to fund the distribution system.

	Recovery							
	Period							
Customer Class	(Years)	1	2	3	4	5	6	7
Residential	7	\$ 0.0466	\$ 0.0466	\$ 0.0466	\$ 0.0466	\$ 0.0466	\$ 0.0466	\$ 0.0466
Small Commercial	5	17.52	17.52	17.52	17.52	17.52	-	-
Medium Commercial	5	11.12	11.12	11.12	11.12	11.12	-	-
Large Commercial	5	8.26	8.26	8.26	8.26	8.26	-	-

Table 2 – Determination of Present Value of Contribution Margins

Table 3 details the value of the contribution margins by customer class. The value of the fixed cost recovery for a typical residential customer is \$2,613. Due to variations in customer usages within the small, medium, and large commercial classes, the utility investment is best expressed on a per kW basis multiplied by the projected annual kW sales for that customer. For example, to determine the value of a new small commercial customer's \$73.78 kW is multiplied by the annual kW sales to the new customer.

		Recovery								Utility
	(COS Revenue	Fixed Costs		Period	Utility			In	vestment
Customer Class		Requirement	Contribution		(Years)	Investment				per
Residential	\$	13,063,323	\$	5,064,162	7	\$	0.2604	per kWh	\$	2,613
Small Commercial		2,573,321		998,725	5		73.78	per kW		2,579
Medium Commercial		3,550,578		1,170,097	5		46.85	per kW		31,394
Large Commercial		1,863,373		508,490	5		34.80	per kW		112,734

Table 3 – Average Contribution Margin per Billing Basis

Step Three - Infrastructure Cost Analysis

The determination of impact fees depends on the additional capacity needed to service new load and is expressed by amperage and voltage requirements. The infrastructure costs are broken down into the following components:

- Distribution Local investments made to service customers peak demands
- Distribution Substation investments made to service peaks of customers located in specific areas
- System Substations investments made to handle HLP's peak demands
- Transmission System investments made to handle HLP's peak demands

HLP provided a capacity plan for the total system with a breakout of the amount attributed to expansion due to growth. The table below outlines the projected HLP investments in plant, the additional capacity provided by the investments, the expansion costs on a per kW basis, and the location of the capacity investment.

In addition, HLP provided historic record of impact fee related revenue and expenditures since the 2019 study. To accurately reflect revenue related to outstanding projects, UFS allocated the net fund balance at Year End 2022 to the components below.

Table 4 is used to identify the cost impacts associated with each type of cost component.

				Optimal to Base		
Cost Component	Gro	ss Investment	Additional Capacity	Loading	Cost per kW	Allocation
Distribution Local & Substations	\$	14,033,680	104,200	0.79	\$ 170.48	Customer Demand
Distribution Substation		4,730,000	34,500	0.79	173.55	Customer Demand
System Substations		35,083,000	240,000	0.79	185.04	СР
Transmission System		22,440,000	10,000	0.79	2,840.51	СР
Total	\$	76,286,680	388,700		3,369.57	

Table 4 – Cost of Additional Investment in Plant

Customer Demand = Peaks created by customers

NCP = Area or Class Peak Demands

CP = System Peak Demands

Step Four – Determine Cost Impact by Class

The cost of service study provided information on each class's demand impacts on various portions of the electric system and the capacity needs for a new customer within each class.

Residential Class Example

The average residential customer creates a peak demand of 8.52 kW on local infrastructure and substations and 3.09 kW on system substations and transmission systems. The expansion cost per kW (A. Rate per kW) is then multiplied by the capacity needs for an average residential customer to generate the cost impacts by component. For residential, the average cost impact is \$8,923 and the maximum utility contribution derived in Table 3 was subtracted to generate an average impact of \$6,310.

	Small			Medium		Large	
			General	General			General
Description	Re	esidential	Service		Service		Service
A. Rate per kW							
Distribution Local	\$	227.94	\$ 227.94	\$	227.94	\$	227.94
System Substation		185.04	185.04		185.04		185.04
Transmission System		2,840.51	2,840.51		2,840.51		2,840.51
B. Average Impacts							
Distribution Local (NCP)		8.52	5.76		84.06		379.59
System Substation (kW)		3.09	3.64		44.35		214.37
Transmission System (kW)		3.09	3.64		44.35		214.37
C. Optimal to Base Loading		0.79	0.79		0.79		0.79
Cost Impact by Component (A x B x C)							
Distribution Local & Substations (NCP)	\$	1,534	\$ 1,037	\$	15,136	\$	68,354
System Substation (kW)		452	532		6,483		31,336
Transmission System (kW)		6,937	8,161		99,514		481,047
Total Impact Cost	\$	8,923	\$ 9,730	\$	121,133	\$	580,737
Less: Maximum Utility Contribution		2,613	 2,579		31,394		112,734
Impact Fees to be Recovered	\$	6,310	\$ 7,150	\$	89,739	\$	468,003

Table 5 – Calculation of Impact Fees by Class

Step Five – Conversion to Amperage

Table 6 expresses the Table 5 results by Amperage and Voltage level using a typical residential customer's as 200 AMP service voltage as the base.

	12/240		120/208		2	77/480
	Volt			Volt		Volt
10 A	\$	315	\$	474	\$	1,093
20 A		631		947		2,186
30 A		946		1,421		3,279
40 A		1,262		1,894		4,372
50 A		1,577		2 <i>,</i> 368		5,464
60 A		1,893		2,842		6,557
70 A		2,208		3 <i>,</i> 315		7,650
80 A		2,524		3,789		8,743
90 A		2 <i>,</i> 839		4,263		9 <i>,</i> 836
100 A		3,155		4,736		10,929
125 A		3 <i>,</i> 943		5,920		13,661
150 A		4,732		7,104		16,393
200 A		6,310		9,472		21,858
400 A		12,619		18,945		43,716
600 A		18,929		28,417		65,574

Table 6 – Impact Fees by Amperage and Voltage Level

Significant Assumptions

The following assumptions are made in the creation of this report:

- **1) Discount Rate** -6.0%
- 2) Recovery Period:

All Residential Services – 7 year recovery Commercial – 5 year recovery

Statistical Information

		Small	Medium	Large
		General	General	General
Description	Residential	Service	Service	Service
Number of Customers	11,210	1,631	157	19
Energy at Meter	119,870,177	22,242,699	36,516,081	22,620,512
NCP Meter	31,179	4,854	8,671	4,289
NCP Primary	32,570	4,975	9,058	4,410
NCP Input	34,010	5,052	9,458	4,513
Annual LF	14%	27%	32%	36%
Group LF	39%	42%	51%	51%
Class Peak Factor	98%	98%	86%	80%
Impacts on Local Distribution Lines				
Total Class - Indivdual NCP	95,495	9,393	13,197	7,212
Average Customer NCP	8.52	5.76	84.06	379.59
Impacts on Distribution Substations				
Total Class NCP	35,308	6,043	8,098	5,072
Average Customer NCP	3.09	3.64	44.35	214.37
Facilities				
Total System CP	34,654	5,932	6,962	4,073
Average kW - System	3.09	3.64	44.35	214.37

Table 7 – Class Load Data and Statistics

Considerations

Currently, new customers are not contributing enough to cover the cost of capacity upgrades to the system. The table below compares the current and proposed impact fees and has identified the need for a 34.7% adjustment.

	Current	Proposed	Dollar	Percent		
	120/240 Volt	120/240 Volt	Adjustment	Adjustment		
10 A	\$ 234.20	\$ 315.49	\$ 81.29	34.7%		
20 A	468.40	630.96	162.56	34.7%		
30 A	702.60	946.44	243.84	34.7%		
40 A	936.80	1,261.91	325.11	34.7%		
50 A	1,171.00	1,577.40	406.40	34.7%		
60 A	1,405.20	1,892.87	487.67	34.7%		
70 A	1,639.40	2,208.36	568.96	34.7%		
80 A	1,873.60	2,523.82	650.22	34.7%		
90 A	2,107.80	2,839.31	731.51	34.7%		
100 A	2,342.00	3,154.78	812.78	34.7%		
125 A	2 <i>,</i> 927.50	3,943.48	1,015.98	34.7%		
150 A	3,513.00	4,732.18	1,219.18	34.7%		
200 A	4,684.00	6 <i>,</i> 309.56	1,625.56	34.7%		
400 A	9 <i>,</i> 368.00	12,619.14	3,251.14	34.7%		
600 A	14,052.00	18,928.69	4,876.69	34.7%		
800 A	18,736.00	25,238.27	6,502.27	34.7%		
1000 A	23,420.00	31,547.83	8,127.83	34.7%		
1200 A	28,104.00	37 <i>,</i> 857.39	9,753.39	34.7%		

Table 8 – 120/240 Voltage Recommended Impact Fees

	Current Proposed		Dollar	Percent	
	120/208 Volt	120/208 Volt	Adjustment	Adjustment	
10 A	\$ 351.60	\$ 473.64	\$ 122.04	34.7%	
20 A	703.20	947.24	244.04	34.7%	
30 A	1,054.80	1,420.88	366.08	34.7%	
40 A	1,406.40	1,894.48	488.08	34.7%	
50 A	1,758.00	2,368.12	610.12	34.7%	
60 A	2,109.60	2,841.73	732.13	34.7%	
70 A	2,461.20	3,315.36	854.16	34.7%	
80 A	2,812.80	3,788.97	976.17	34.7%	
90 A	3,164.40	4,262.61	1,098.21	34.7%	
100 A	3,516.00	4,736.21	1,220.21	34.7%	
125 A	4,395.00	5,920.27	1,525.27	34.7%	
150 A	5,274.00	7,104.33	1,830.33	34.7%	
200 A	7,032.00	9,472.42	2,440.42	34.7%	
400 A	14,064.00	18,944.87	4,880.87	34.7%	
600 A	21,096.00	28,417.29	7,321.29	34.7%	
800 A	28,128.00	37,889.74	9,761.74	34.7%	
1000 A	35,160.00	47,362.16	12,202.16	34.7%	
1200 A	42,192.00	56 <i>,</i> 834.57	14,642.57	34.7%	
1400 A	49,224.00	66,307.01	17,083.01	34.7%	
1600 A	56,256.00	75,779.44	19,523.44	34.7%	
1800 A	63,288.00	85,251.88	21,963.88	34.7%	
2000 A	70,320.00	94,724.29	24,404.29	34.7%	
2500 A	87,900.00	118,405.38	30,505.38	34.7%	
3000 A	105,480.00	142,086.45	36,606.45	34.7%	

Table 9 – 120/208 Voltage Recommended Impact Fees

UTILITY FINANCIAL SOLUTIONS, LLC	

	Current	Proposed	Dollar	Percent
	277/480 Volt	277/480 Volt	Adjustment	Adjustment
10 A	\$ 811.30	\$ 1,092.93	\$ 281.63	34.7%
20 A	1,622.60	2,185.78	563.18	34.7%
30 A	2,433.90	3,278.71	844.81	34.7%
40 A	3,245.20	4,371.56	1,126.36	34.7%
50 A	4,056.50	5 <i>,</i> 464.49	1,407.99	34.7%
60 A	4,867.80	6 <i>,</i> 557.35	1,689.55	34.7%
70 A	5,679.10	7,650.28	1,971.18	34.7%
80 A	6,490.40	8,743.13	2,252.73	34.7%
90 A	7,301.70	9,836.06	2,534.36	34.7%
100 A	8,113.00	10,928.91	2,815.91	34.7%
125 A	10,141.25	13,661.16	3,519.91	34.7%
150 A	12,169.50	16,393.40	4,223.90	34.7%
200 A	16,226.50	21,857.82	5,631.32	34.7%
400 A	32,452.00	43,715.72	11,263.72	34.7%
600 A	48,678.00	65,573.54	16,895.54	34.7%
800 A	64,904.00	87,431.44	22,527.44	34.7%
1000 A	81,130.00	109,289.26	28,159.26	34.7%
1200 A	97,356.00	131,068.06	33,712.06	34.7%
1400 A	113,582.00	152,913.04	39,331.04	34.7%
1600 A	129,808.00	174,756.16	44,948.16	34.7%
1800 A	146,034.00	196,601.15	50,567.15	34.7%
2000 A	162,260.00	218,446.14	56,186.14	34.7%
2500 A	202,825.00	273,058.60	70,233.60	34.7%
3000 A	243 <i>,</i> 390.00	327,671.07	84,281.07	34.7%

Table 10 – 277/480 Voltage Recommended Impact Fees